Purification of fetal hematopoietic progenitors and demonstration of recombinant multipotential colony-stimulating activity.

نویسندگان

  • S G Emerson
  • C A Sieff
  • E A Wang
  • G G Wong
  • S C Clark
  • D G Nathan
چکیده

To facilitate the direct study of progenitor cell biology, we have developed a simple and efficient procedure based upon negative selection by panning to purify large numbers of committed erythroid and myeloid progenitors from human fetal liver. The nonadherent, panned cells constitute a highly enriched population of progenitor cells, containing 30.4 +/- 13.1% erythrocyte burst forming units (BFU-E), 5.5 +/- 1.9% granulocyte-macrophage colony forming units (CFU-GM), and 1.4 +/- 0.7% granulocyte-erythroid-macrophage-megakaryocyte colony forming units (CFU-GEMM) as assayed in methylcellulose cultures. These cells are morphologically immature blasts with prominent Golgi. This preparative method recovers 60-100% of the committed progenitors detectable in unfractionated fetal liver and yields 2-30 X 10(6) progenitors from each fetal liver sample, and thus provides sufficient numbers of enriched progenitors to allow direct biochemical and immunologic manipulation. Using this technique, a purified recombinant protein previously thought to have only granulocyte-macrophage colony stimulating activity (GM-CSA) is shown to have both burst promoting activity and multipotential colony stimulating activity. Progenitor purification by panning thus appears to be a simple, efficient method that should facilitate the direct study of committed hematopoietic progenitors and their differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recombinant gibbon interleukin 3 supports formation of human multilineage colonies and blast cell colonies in culture: comparison with recombinant human granulocyte-macrophage colony-stimulating factor.

The genetic sequences encoding the gibbon and human interleukin 3 (IL 3) proteins were molecularly cloned. The amino acid sequence of the mature gibbon IL 3 protein proved to share 93% homology with the corresponding human protein. We examined the effects of biosynthetic (recombinant) gibbon IL 3 on the proliferation and differentiation of an enriched population of human hematopoietic progenito...

متن کامل

Retroviral vector-mediated transfer of the bacterial neomycin resistance gene into fetal and adult sheep and human hematopoietic progenitors in vitro.

We compared the efficiency of retroviral vector (N2)-mediated transfer of the bacterial neomycin resistance gene (NeoR) into adult and fetal hematopoietic progenitors of sheep and humans by assessing their ability to form colonies in the presence of lethal doses of the neomycin analogue G418 in vitro. Fetal cells from both sheep and humans exhibited a higher degree of NeoR transfer than adult c...

متن کامل

Effect in vivo of multiple injections of purified murine and recombinant human macrophage colony-stimulating factor to mice.

Hematopoietic efficacy in vivo of multiple injections of purified murine L-cell and recombinant human macrophage colony-stimulating factors (M-CSF; specific activity, greater than 2 x 10(7) units/mg) was assessed in mice. Injections i.v. of sterile saline or 20,000 units of M-CSF were administered once (at 0 h), twice (at 0 and 12 h), or three times (at 0, 12, and 24 h) to C57BL/6 x DBA/2 F1 mi...

متن کامل

Synergistic interactions between interleukin-11 and interleukin-4 in support of proliferation of primitive hematopoietic progenitors of mice.

Interleukin-11 (IL-11) is a newly identified lymphohematopoietic cytokine originally derived from the primate bone marrow stromal cell line, PU-34. Separately, we reported that IL-11 augments IL-3-dependent proliferation of primitive murine hematopoietic progenitors in culture. We have now examined the synergistic interactions between IL-11 and IL-4 in support of colony formation from marrow ce...

متن کامل

Thrombopoietin, the ligand for the Mpl receptor, synergizes with steel factor and other early acting cytokines in supporting proliferation of primitive hematopoietic progenitors of mice.

Recently, the ligand for the Mpl receptor (ML) was identified to be thrombopoietin, the principal regulator of megakaryocytopoiesis and thrombopoiesis. We examined the effects of ML, as a single factor or in combinations with early acting factors such as steel factor (SF), interleukin (IL)-3, IL-1, IL-6, and granulocyte colony-stimulating factor (G-CSF), on colony formation from primitive proge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 76 3  شماره 

صفحات  -

تاریخ انتشار 1985